

### **N-Channel MOSFET**

Group-Semi N-Channel MOSFET

Dec 2023

#### **GENERAL DESCRIPTION**

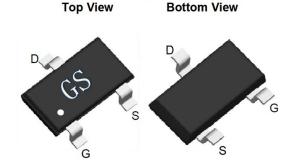
GroupSemiconductor(GS) has series Trench power MOSFET platforms for voltage up 20V to 200 volts, both with design service and manufacturing capability, including cell, termination design and simulation.

The GS 30V 8A N-Channel Power MOSFET is a Low voltage Trench power MOSFET sample with advanced technology to have better characteristics, such as fast switching time, low Ciss and Crss, low on resistance and excellent avalanche characteristics, making it especially suitable for applications which require superior power density and outstanding efficiency.

| Package | Pin Configuration (Top View) |
|---------|------------------------------|
| SOT-23  |                              |

#### **GENERAL FEATURES**

VDS =30V,ID =8A


RDS(ON) (at VGS=10V) <  $11m\Omega$ 

 $R_{DS(ON)}$  (at  $V_{GS} = 4.5V$ ) <13m $\Omega$ 

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high EAS
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

#### **Application**

- Load switch.
- PWM applications



SOT23

#### **Electrical Characteristics**

| Symbol                            | Parameter                              | Conditions                       | Min        | Тур | Max    | Uni                      |
|-----------------------------------|----------------------------------------|----------------------------------|------------|-----|--------|--------------------------|
| Off Character                     | istics                                 |                                  |            |     | ·      |                          |
| BVDSS                             | Drain-Source Breakdown<br>Voltage      | VGS = 0V, ID =250μA,<br>TJ = 25℃ | 30         | -   | -      | v                        |
| V <sub>gs</sub>                   | Gate-Source Voltage                    |                                  | ±12        |     |        | ٧                        |
| l <sub>D</sub>                    | Continuous DrainCurrent                | TC=25°C<br>TC=100°C              | 8          |     |        | Α                        |
| I <sub>DM</sub>                   | Pulsed Drain Current <sup>C</sup>      |                                  | 35         |     |        | Α                        |
| P <sub>D</sub>                    | Power Dissipation <sup>B</sup>         | TC=25°C<br>TC=100°C              | 1.4<br>0.9 |     |        | w                        |
| T <sub>J</sub> , T <sub>STG</sub> | Junction and Storage Temperature Range |                                  | -55 to 150 |     | °C     |                          |
| IDSS                              | Zero Gate Voltage Drain<br>Current     | VDS = 30V, VGS = 0V<br>-TJ = 55℃ | -          | -   | 1<br>5 | μ <b>Α</b><br>μ <b>Α</b> |
| IGSSF                             | Gate-Body Leakage Current, Forward     | VGS = 12V, VDS = 0V              | -          | -   | 100    | nA                       |
| IGSSR                             | Gate-Body Leakage Current,<br>Reverse  | VGS = -12V, VDS = 0V             | -          | -   | -100   | nA                       |

www.groupsemi.com **Rev0.1, 10/12/2016** 



### **N-Channel MOSFET**

| Thermal Charac | teristics                                             |                                       |     |         |          |      |
|----------------|-------------------------------------------------------|---------------------------------------|-----|---------|----------|------|
| _              | Maximum Junction-to-Ambient ^                         |                                       | 70  |         | 90       | °C/W |
| Reja           | Maximum Junction-to-Ambient **                        |                                       | 100 |         | 125      | °C/W |
| Rejc           | Maximum Junction-to-Case                              |                                       | 63  |         | 80       | °C/W |
| On Characteri  | stics                                                 |                                       |     |         |          |      |
| VGS(th)        | Gate Threshold Voltage                                | VDS = VGS, ID =250μA                  | 1   | 1.5     | 1.8      | V    |
| RDS(on)        | Static Drain-Source On-<br>Resistance                 | VGS =10V, ID =8A<br>VGS =4.5V, ID =8A | -   | 9<br>10 | 11<br>13 | mΩ   |
| gFS            | Forward Transconductance                              | VDS = 5V, ID =8A                      | -   | 33      | -        | S    |
| Rg             | Gate resistance                                       | VGS=0V, VDS=0V,<br>f=1MHz             | -   | 3.5     | -        | Ω    |
| Dynamic Chai   | racteristics                                          |                                       |     |         |          |      |
| Ciss           | Input Capacitance                                     | VDS =15V, VGS = 0V,                   | -   | 410     | -        | pF   |
| Coss           | Output Capacitance                                    | f=1MHz                                | -   | 217     | -        | pF   |
| Crss           | Reverse Transfer Capacitance                          |                                       | -   | 102     | -        | pF   |
| Switching Cha  | aracteristics                                         |                                       |     |         |          |      |
| td(on)         | Turn-On Delay Time                                    | VDS =15, RG = 3Ω,                     | -   | 12      | -        | ns   |
| tr             | Turn-On Rise Time                                     | ID =8A , VGS =10V (Note 5, 6)         | -   | 4       | -        | ns   |
| td(off)        | Turn-Off Delay Time                                   |                                       | -   | 32      | -        | ns   |
| tf             | Turn-Off Fall Time                                    |                                       | -   | 18      | -        | ns   |
| Qg(10V)        | Total Gate Charge                                     | VDS =15V, ID =8A,                     | -   | 7.5     | -        | nC   |
| Qg(4.5V)       | <b>Total Gate Charge</b>                              | VGS =10V (Note 5, 6)                  | -   | 6.8     | -        | nC   |
| Qgs            | Gate-Source Charge                                    |                                       | -   | 1.9     | -        | nC   |
| Qgd            | Gate-Drain Charge                                     |                                       | -   | 1.7     | -        | nC   |
| Drain-Source   | Diode Characteristics and Maximum                     | Ratings                               |     |         |          |      |
| IS             | Maximum Continuous Drain-Source Diode Forward Current |                                       | -   | -       | 2        | Α    |
| ISM            | Maximum Pulsed Drain-Source                           | Diode Forward Current                 | -   | -       | 30       | Α    |
| VSD            | Drain-Source Diode Forward Voltage                    | VGS = 0V, IS = 1A                     | -   | 0.7     | 1.2      | V    |
| trr            | Reverse Recovery Time                                 | I <sub>F</sub> =5.8A, dI/dt=100A/us   | -   | 8.5     | -        | ns   |
| Qrr            | Reverse Recovery Charge                               |                                       | -   | 2.6     | -        | nC   |

A. The value of  $R_{\text{OJA}}$  is measured with the device mounted on  $1\text{in}_2$  FR-4 board with 2oz. Copper, in a still air environment with  $T_A$  =25°C. The Power dissipation  $P_{\text{DSM}}$  is based on R  $_{\text{OJA}}$  and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.

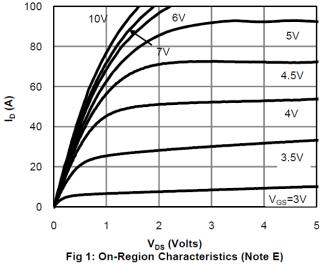
B. The power dissipation P<sub>D</sub> is based on T<sub>J(MAX)</sub>=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature  $T_{J(MAX)}$ =175°C. Ratings are based on low frequency and duty cycles to keep initial  $T_J$ =25°C.

D. The Roua is the sum of the thermal impedence from junction to case Rouc and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T<sub>J(MAX)</sub>=175°C. The SOA curve provides a single pulse rating.


G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in<sub>2</sub> FR-4 board with 2oz. Copper, in a still air environment with T<sub>A</sub>=25°C.



## **N-Channel MOSFET**

### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



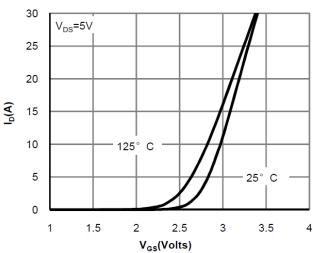
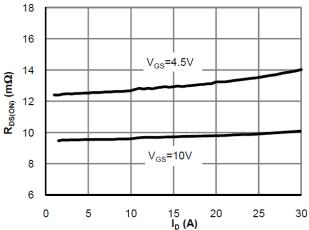
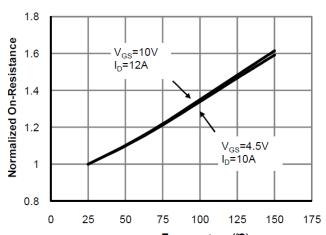
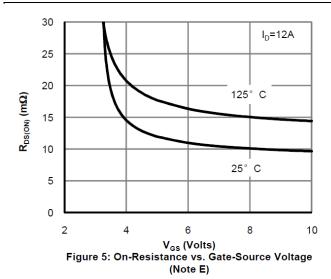
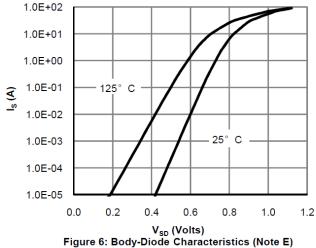


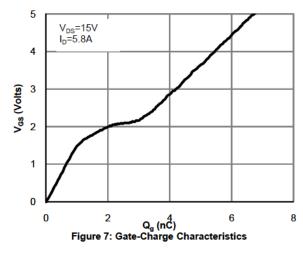

Figure 2: Transfer Characteristics (Note E)

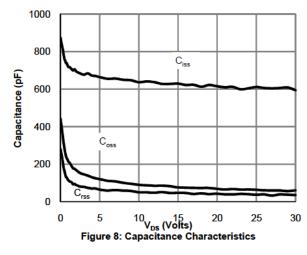



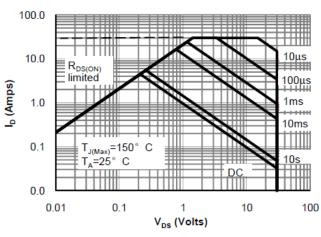


Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)




Temperature (℃) Figure 4: On-Resistance vs. Junction Temperature (Note E)





### **N-Channel MOSFET**






#### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS







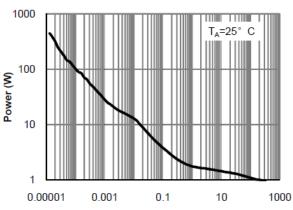
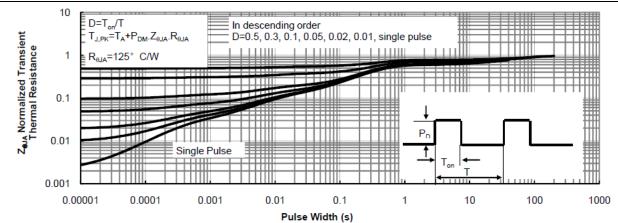
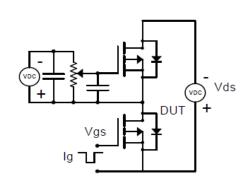
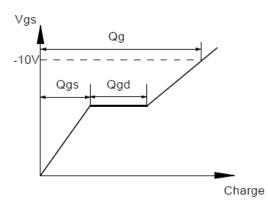


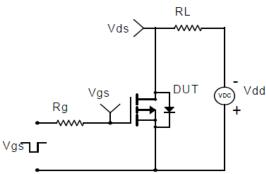

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

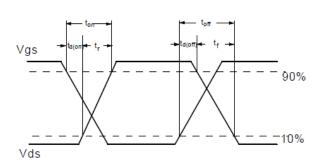
Pulse Width (s) Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note F)



## **N-Channel MOSFET**

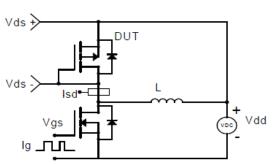


Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

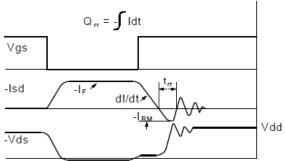

### Gate Charge Test Circuit & Waveform

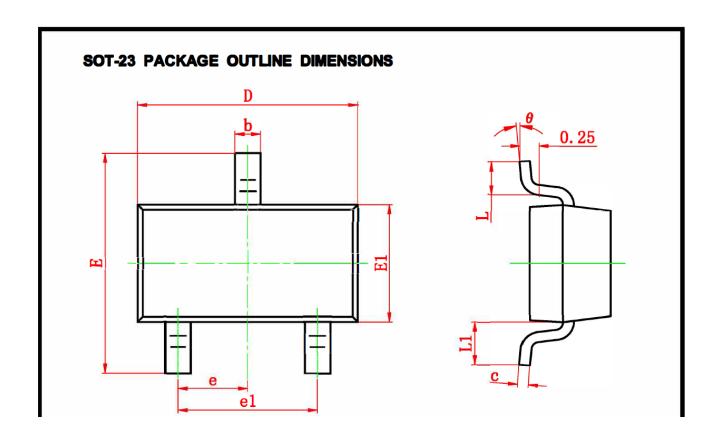




### Resistive Switching Test Circuit & Waveforms

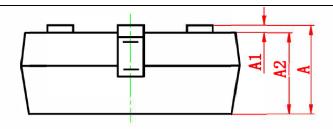



# **N-Channel MOSFET**

Diode Recovery Test Circuit & Waveforms










# **N-Channel MOSFET**



| Symbol | Dimensions In Millimeters |       | Dimensions In Inches |       |  |
|--------|---------------------------|-------|----------------------|-------|--|
|        | Min.                      | Max.  | Min.                 | Max.  |  |
| Α      | 0.900                     | 1.150 | 0.035                | 0.045 |  |
| A1     | 0.000                     | 0.100 | 0.000                | 0.004 |  |
| A2     | 0.900                     | 1.050 | 0.035                | 0.041 |  |
| b      | 0.300                     | 0.500 | 0.012                | 0.020 |  |
| С      | 0.080                     | 0.150 | 0.003                | 0.006 |  |
| D      | 2.800                     | 3.000 | 0.110                | 0.118 |  |
| Е      | 2.250                     | 2.550 | 0.089                | 0.100 |  |
| E1     | 1.200                     | 1.400 | 0.047                | 0.055 |  |
| e      | 0.950 TYP.                |       | 0.037                | TYP.  |  |
| e1     | 1.800                     | 2.000 | 0.071                | 0.079 |  |
| L      | 0.300                     | 0.500 | 0.012                | 0.020 |  |
| L1     | 0.550 REF.                |       | 0.022                | REF.  |  |
| θ      | 0°                        | 8°    | 0°                   | 8°    |  |