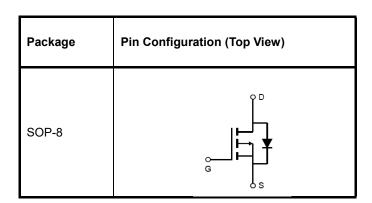


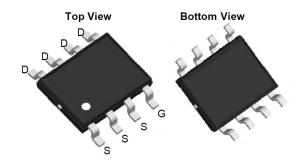
Group-Semi N -Channel MOSFET

Dec 2016

GENERAL DESCRIPTION

The GSR3010T uses advanced trench technology MOSFETs to provide excellent RDS(ON) and low gate charge. The complementary MOSFETs may be used to form a level shifted high side switch, and for a host of other applications. Standard Product GSR3010T is Pb-free. GSR3010T is electrically identical.


GENERAL FEATURES


N-channel

- $V_{DS} = 30V, I_D = 25A$ $R_{DS(ON)} < 12m\Omega$ @ $V_{GS} = 10V$ $R_{DS(ON)} < 18m\Omega$ @ $V_{GS} = 4.5V$
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high EAS
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- H-bridge
- Inverters

Thermal Characteristics

Symbol	Parameter	GSR3010T				Unit	
	Maximum Junction-to-Ambient, t<10s	7				°C/W	
$R_{\theta JA}$	Maximum Junction-to-Ambient, Steady-State	20 32				°C/W	
R _{0JL}	Maximum Junction-to-Lead, Steady- State					℃/ W	
	Electrical Characteristics	T					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
Off Charac	cteristics						
BVDSS	Drain-Source Breakdown Voltage	VGS = 0V, ID = 250μA, TJ = 25℃	30	-	-	V	
IDSS	Zero Gate Voltage Drain Current	VDS = 30V, VGS = 0V -TJ = 55℃	-	-	1 5	μ Α μ Α	
IGSSF	Gate-Body Leakage Current, Forward	VGS = 20V, VDS = 0V	-	-	100	nA	
IGSSR	Gate-Body Leakage Current, Reverse	VGS = -20V, VDS = 0V	-	-	-100	nA	
On Charac	eteristics						
VGS(th)	Gate Threshold Voltage	VDS = VGS, ID = 250μA	1.0	1.8	3.0	V	
RDS(on)	Static Drain-Source On- Resistance	VGS = 10V, ID = 6A VGS = 4.5V, ID = 5A	-	12 35	18 45	mΩ	
gFS	Forward Transconductance	VDS = 5V, ID = 6A	-	15	-	S	
Rg	Gate resistance	VGS=0V, VDS=0V, f=1MHz	-	3.2	-	Ω	
Dynamic (Characteristics						
Ciss	Input Capacitance	VDS = 15V, VGS = 0V, f=1MHz	-	400	-	рF	
Coss	Output Capacitance		-	45	-	pF	
Crss	Reverse Transfer Capacitance		-	70	-	рF	
Switching	Characteristics						
td(on)	Turn-On Delay Time	VDS = 15V, RG = 3Ω,	-	4.5	-	ns	
tr	Turn-On Rise Time	ID = 6A , VGS = 10V (Note 5,	-	2.5	-	ns	
td(off)	Turn-Off Delay Time	6)	-	14.5	-	ns	
tf	Turn-Off Fall Time		-	3.5	-	ns	
Qg(10V)	Total Gate Charge	VDS = 15V, ID = 6A,	-	5.2	-	nC	
Qg(4.5V)	Total Gate Charge	VGS = 0~10V (Note 5, 6)	-	2.6	-	nC	
Qgs	Gate-Source Charge		-	8.0	-	nC	
Qgd	Gate-Drain Charge		-	1.3	-	nC	
Drain-Sou	rce Diode Characteristics and Maximum F	Ratings					
IS	Maximum Continuous Drain-So	urce Diode Forward Current	-	-	25	Α	
ISM	Maximum Pulsed Drain-Source		-	-	50	Α	
VSD	Drain-Source Diode Forward Voltage	VGS = 0V, IS = 1A	-	0.7	1.0	v	
trr	Reverse Recovery Time	VGS = 0V, IS =6A dIF/dt	-	8.5	-	ns	
Qrr	Reverse Recovery Charge	=100A/µs (Note 5)		2.2	-	nC	

N-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

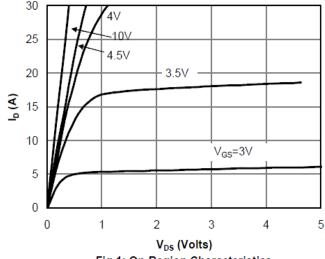


Fig 1: On-Region Characteristics

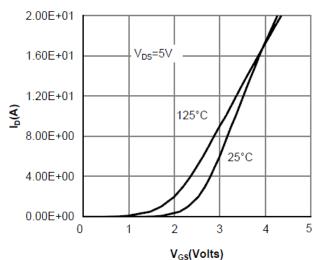


Figure 2: Transfer Characteristics

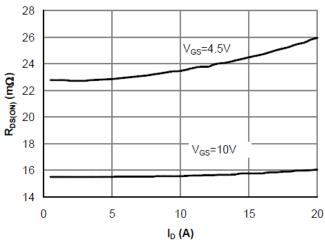


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

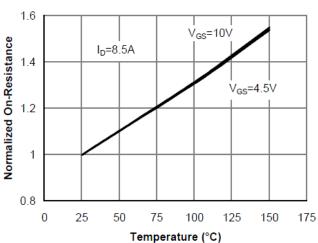


Figure 4: On-Resistance vs. Junction
Temperature

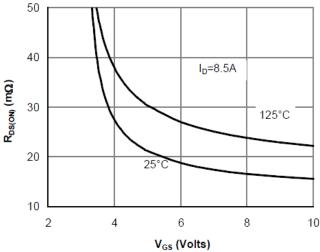


Figure 5: On-Resistance vs. Gate-Source Voltage

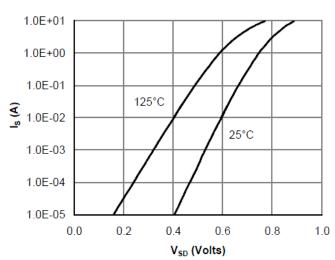


Figure 6: Body-Diode Characteristics

N-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

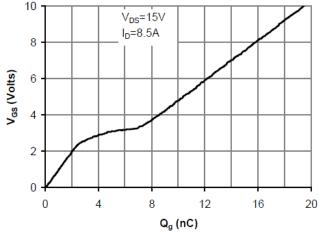


Figure 7: Gate-Charge Characteristics

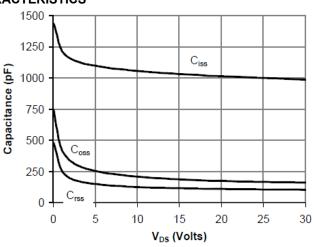


Figure 8: Capacitance Characteristics

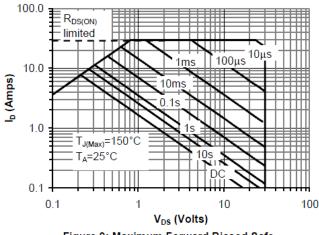


Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

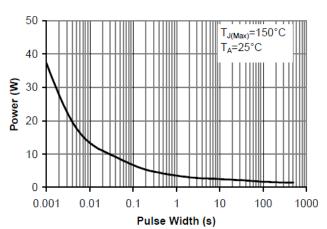
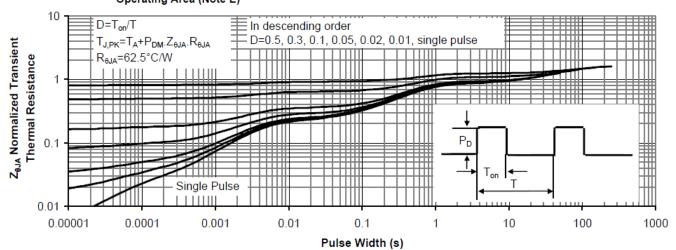
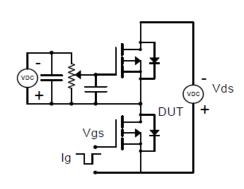
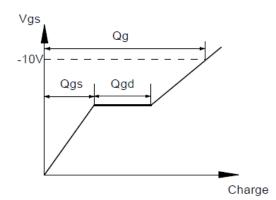
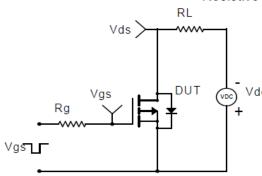
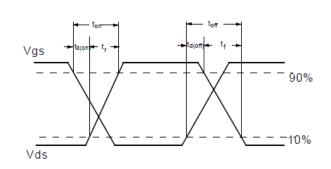
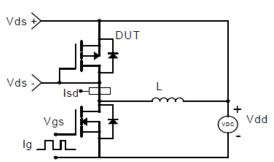


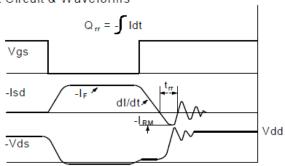
Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)


Figure 11: Normalized Maximum Transient Thermal Impedance


Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

