

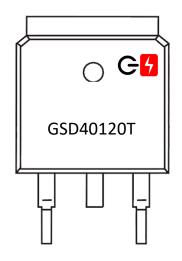
## Group-Semi N-Channel MOSFET

**Dec 2016** 

#### **GENERAL DESCRIPTION**

GroupSemiconductor(GS) has series Trench power MOSFET platforms for voltage up 20V to 200 volts, both with design service and manufacturing capability, including cell, termination design and simulation.

The GS 40V 120A N-Channel Power MOSFET is a Low voltage P channel Trench power MOSFET sample with advanced technology to have better characteristics, such as fast switching time, low Ciss and Crss, low on resistance and excellent avalanche characteristics, making it especially suitable for applications which require superior power density and outstanding efficiency.


# Package Pin Configuration (Top View) TO-252

## **GENERAL FEATURES**

- VDS =40V,ID =120A
   RDS(ON) <4.2mΩ @ VGS=10V</li>
   RDS(ON) <6mΩ @ VGS=4.5V</li>
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high EAS
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

#### **Application**

- SR
- Inverters



## **Electrical Characteristics**

| Symbol                            | Parameter                              | Conditions                        | Min        | Тур | Max    | Unit                     |
|-----------------------------------|----------------------------------------|-----------------------------------|------------|-----|--------|--------------------------|
| Off Character                     | ristics                                |                                   |            |     |        |                          |
| BVDSS                             | Drain-Source Breakdown<br>Voltage      | VGS = 0V, ID = 250μA,<br>TJ = 25℃ | 40         | -   | -      | V                        |
| V <sub>gs</sub>                   | Gate-Source Voltage                    |                                   | ±25        |     |        | ٧                        |
| I <sub>D</sub>                    | Continuous DrainCurrent                | TC=25°C<br>TC=100°C               | 120<br>80  |     |        | Α                        |
| I <sub>DM</sub>                   | Pulsed Drain Current <sup>C</sup>      |                                   | 240        |     |        | Α                        |
| I <sub>AS</sub>                   | Avalanche Current <sup>C</sup>         |                                   | 40         |     |        | Α                        |
| Eas                               | Avalanche energy L=0.1mH <sup>c</sup>  |                                   | 46         |     |        | mJ                       |
| P <sub>D</sub>                    | Power Dissipation <sup>B</sup>         | TC=25°C<br>TC=100°C               | 83<br>33   |     |        | w                        |
| P <sub>DSM</sub>                  | Power Dissipation <sup>A</sup>         | TC=25°C<br>TC=70°C                | 7.3<br>4.7 |     |        | w                        |
| T <sub>J</sub> , T <sub>STG</sub> | Junction and Storage Temperature Range |                                   | -55 to 150 |     |        | °C                       |
| IDSS                              | Zero Gate Voltage Drain<br>Current     | VDS = 40V, VGS = 0V<br>-TJ = 55℃  | -          | -   | 1<br>5 | μ <b>Α</b><br>μ <b>Α</b> |
| IGSSF                             | Gate-Body Leakage Current, Forward     | VGS = 20V, VDS = 0V               | -          | -   | 100    | nA                       |
| IGSSR                             | Gate-Body Leakage Current,<br>Reverse  | VGS = -20V, VDS = 0V              | -          | -   | -100   | nA                       |

www.groupsemi.com Rev0, 10/12/2016



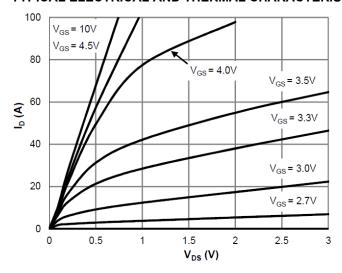
# **N-Channel MOSFET**

| Reja          | Maximum Junction-to-Ambient ^                         |                                                            | 14  |      |          | °C/W |
|---------------|-------------------------------------------------------|------------------------------------------------------------|-----|------|----------|------|
|               | Maximum Junction-to-Ambient ^0                        |                                                            | 40  |      |          | °C/W |
| Rелс          | Maximum Junction-to-Case                              |                                                            | 1.1 |      |          | °C/W |
| On Characteri | stics                                                 |                                                            |     |      |          |      |
| VGS(th)       | Gate Threshold Voltage                                | VDS = VGS, ID = 250μA                                      | 1.2 | 1.8  | 2.5      | ٧    |
| RDS(on)       | Static Drain-Source On-<br>Resistance                 | VGS = 10V, ID = 20A<br>VGS = 4.5V, ID = 20A                | -   | 4 5  | 4.5<br>6 | mΩ   |
| gFS           | Forward Transconductance                              | VDS = 5V, ID = 20A                                         | -   | 80   | -        | S    |
| Rg            | Gate resistance                                       | VGS=0V, VDS=0V,<br>f=1MHz                                  | -   | 1.8  | -        | Ω    |
| Dynamic Char  | racteristics                                          |                                                            |     |      |          |      |
| Ciss          | Input Capacitance                                     | VDS = 20V, VGS = 0V,<br>f=1MHz                             | -   | 1200 | -        | pF   |
| Coss          | Output Capacitance                                    |                                                            | -   | 540  | -        | pF   |
| Crss          | Reverse Transfer Capacitance                          |                                                            | -   | 52   | -        | рF   |
| Switching Cha | aracteristics                                         |                                                            |     |      |          |      |
| td(on)        | Turn-On Delay Time                                    | VDS = 20V, RG = 3Ω,<br>ID = 20A , VGS = 10V<br>(Note 5, 6) | -   | 6.4  | -        | ns   |
| tr            | Turn-On Rise Time                                     |                                                            | -   | 17   | -        | ns   |
| td(off)       | Turn-Off Delay Time                                   |                                                            | -   | 29   | -        | ns   |
| tf            | Turn-Off Fall Time                                    |                                                            | -   | 16.8 | -        | ns   |
| Qg(10V)       | Total Gate Charge                                     | VDS = 20V, ID = 20A,<br>VGS =0~10V (Note 5, 6)             | -   | 28   | -        | nC   |
| Qg(4.5V)      | <b>Total Gate Charge</b>                              |                                                            | -   | 23   | -        | nC   |
| Qgs           | Gate-Source Charge                                    |                                                            | -   | 4.5  | -        | nC   |
| Qgd           | Gate-Drain Charge                                     |                                                            | -   | 6.4  | -        | nC   |
| Drain-Source  | Diode Characteristics and Maximum I                   | Ratings                                                    |     |      |          |      |
| IS            | Maximum Continuous Drain-Source Diode Forward Current |                                                            | -   | -    | 30       | Α    |
| ISM           | Maximum Pulsed Drain-Source                           | Maximum Pulsed Drain-Source Diode Forward Current          |     | -    | 80       | Α    |
| VSD           | Drain-Source Diode Forward Voltage                    | VGS = 0V, IS = 1A                                          | -   | 0.7  | 1.2      | V    |
| trr           | Reverse Recovery Time                                 | I=20A, dl/dt=100A/us                                       | -   | 30   | -        | ns   |
| Qrr           | Reverse Recovery Charge                               |                                                            | -   | 24   | -        | nC   |

A. The value of  $R_{\text{NJA}}$  is measured with the device mounted on  $1\text{in}_2$  FR-4 board with 2oz. Copper, in a still air environment with  $T_A$  =25°C. The Power dissipation PDSM is based on R BJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.

- D. The  $R_{\theta JA}$  is the sum of the thermal impedence from junction to case  $R_{\theta JC}$  and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

  F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming
- a maximum junction temperature of T<sub>J(MAX)</sub>=175°C. The SOA curve provides a single pulse rating.
- G. The maximum current rating is package limited.
- H. These tests are performed with the device mounted on 1 in<sub>2</sub> FR-4 board with 2oz. Copper, in a still air environment with T<sub>A</sub>=25°C.


www.groupsemi.com

 $B. \ The \ power \ dissipation \ P_D \ is \ based \ on \ T_{J(MAX)} = 175^{\circ}C, \ using \ junction-to-case \ thermal \ resistance, \ and \ is \ more \ useful \ in \ setting \ the \ upper \ power \ dissipation \ P_D \ is \ based \ on \ T_{J(MAX)} = 175^{\circ}C, \ using \ junction-to-case \ thermal \ resistance, \ and \ is \ more \ useful \ in \ setting \ the \ upper \ power \ dissipation \ P_D \ is \ based \ on \ T_{J(MAX)} = 175^{\circ}C, \ using \ junction-to-case \ thermal \ resistance, \ and \ is \ more \ useful \ in \ setting \ the \ upper \ power \ pow$ dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature T<sub>J(MAX)</sub>=175°C. Ratings are based on low frequency and duty cycles to keep

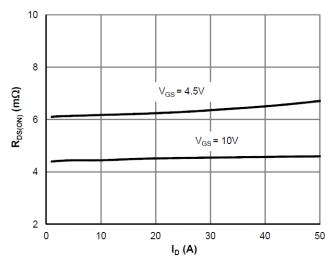
# **N-Channel MOSFET**

## TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



30 V<sub>DS</sub> = 5.0V

24 T<sub>J</sub> = 125°C


12 T<sub>J</sub> = 25°C

6 0
0 1 2 3 4 5

V<sub>GS</sub>(V)

Figure 1: Saturation Characteristics

Figure 2: Transfer Characteristics



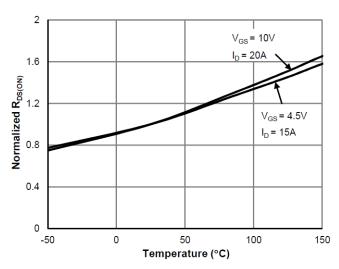
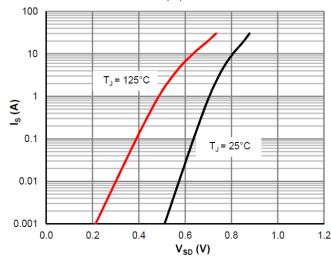




Figure 3: R<sub>DS(ON)</sub> vs. Drain Current

Figure 4:  $R_{DS(ON)}$  vs. Junction Temperature



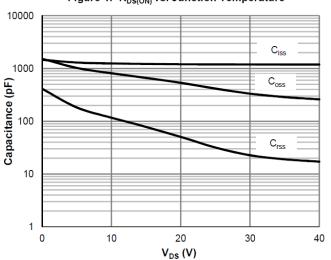
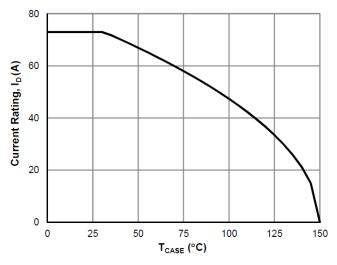




Figure 5: Body-Diode Characteristics

Figure 6: Capacitance Characteristics

## TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



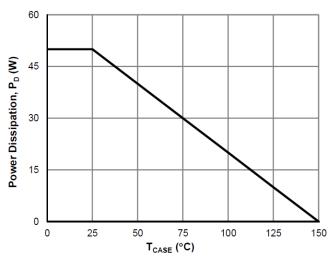



Figure 7: Current De-rating

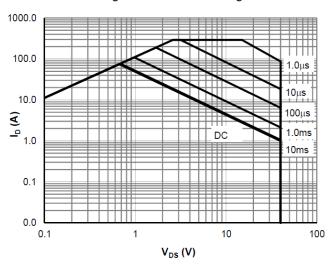



Figure 8: Power De-rating

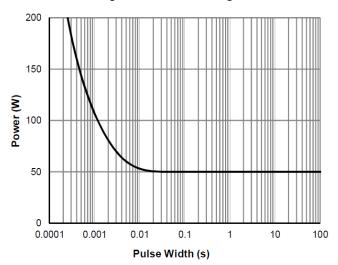



Figure 9: Safe operating area

Figure 10: Single Pulse Power Rating, Junction-to-Case

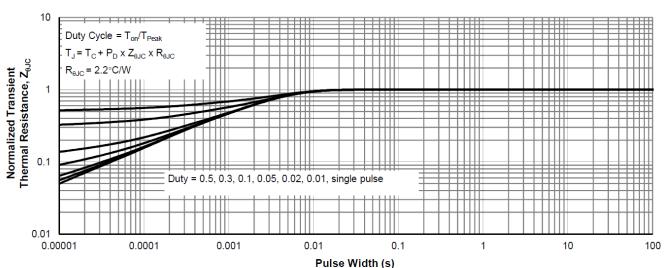
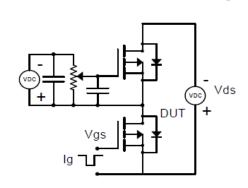
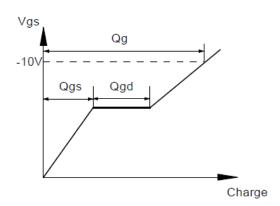
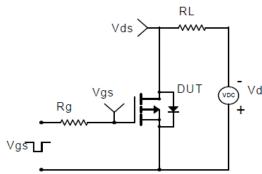
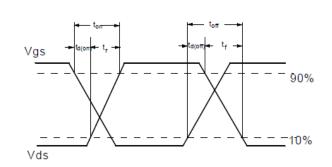
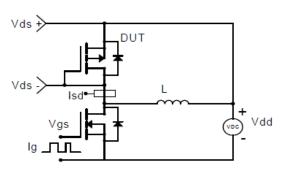




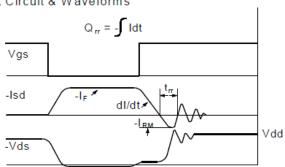

Figure 11: Normalized Maximum Transient Thermal Impedance


# TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS


# Gate Charge Test Circuit & Waveform







# Resistive Switching Test Circuit & Waveforms





## Diode Recovery Test Circuit & Waveforms



