GSR30P30T

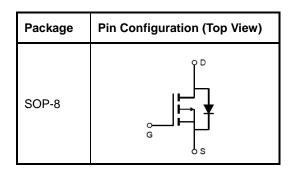
Group-Semi P-Channel MOSFET

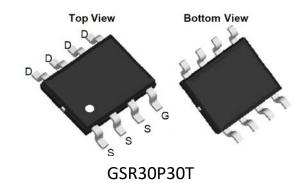
GENERAL DESCRIPTION

GroupSemiconductor(GS) has series Trench power MOSFET platforms for voltage up 20V to 200 volts, both with design service and manufacturing capability, including cell, termination design and simulation.

The GS 30V 25A P-Channel Power MOSFET is a Low voltage P channel Trench power MOSFET sample with advanced technology to have better characteristics, such as fast switching time, low Ciss and Crss, low on resistance and excellent avalanche characteristics, making it especially suitable for applications which require superior power density and outstanding efficiency.

GENERAL FEATURES


- VDS =-30V,ID =-25A
 RDS(ON) <16mΩ @ VGS=-10V
 RDS(ON) <20mΩ @ VGS=-6V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high EAS
- Excellent package for good heat dissipation
- Special process technology for high ESD capability


Application

Inverters

Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Off Character	istics			I	P	
BVDSS	Drain-Source Breakdown Voltage	VGS = 0V, ID = -250µA, TJ = 25℃	-30	-	-	v
V _{gs}	Gate-Source Voltage		±25			V
ID	Continuous DrainCurrent	TC=25°C TC=100°C	-20 -15			Α
I _{DM}	Pulsed Drain Current ^C		-60			Α
I _{AS}	Avalanche Current ^C		25			Α
Eas	Avalanche energy L=0.1mH ^c		30			mJ
P _D	Power Dissipation ^B	TC=25°C TC=100°C	83 33			w
P _{DSM}	Power Dissipation ^A	TC=25°C TC=70°C	7.3 4.7			w
T _J , T _{STG}	Junction and Storage Temperature Range		-55 to 150			°C
IDSS	Zero Gate Voltage Drain Current	VDS = -30V, VGS = 0V -TJ = 55℃	-	-	-1 -5	μA μA
IGSSF	Gate-Body Leakage Current, Forward	VGS = 12V, VDS = 0V	-	-	100	nA
IGSSR	Gate-Body Leakage Current, Reverse	VGS = -12V, VDS = 0V	-	-	-100	nA
Thermal Chara	cteristics			I		

Dec 2016

GSR30P30T

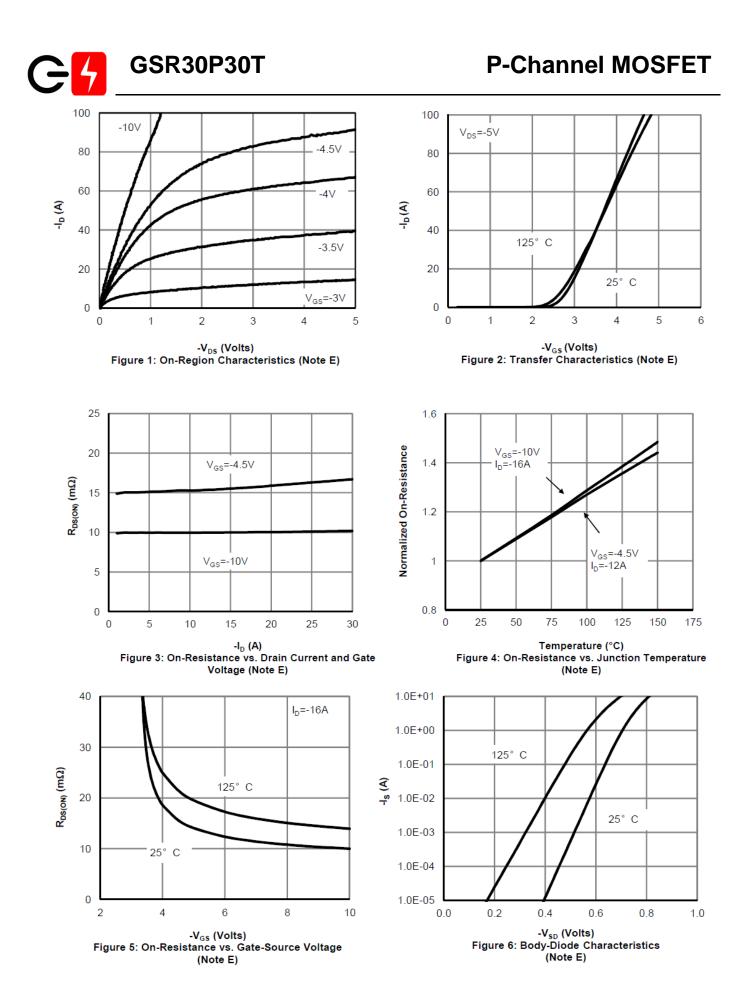
Reja	Maximum Junction-to-Ambient *		14			°C/W
	Maximum Junction-to-Ambient **		40			°C/W
						°C/W
Rejc	Maximum Junction-to-Case		1.1			
On Characteri	stics					
VGS(th)	Gate Threshold Voltage	VDS = VGS, ID = 250µA	-1.0	-1.5	-3.0	V
RDS(on)	Static Drain-Source On- Resistance	VGS = -10V, ID = -10A VGS = -4.5V, ID = -10A	-	14 18	16 20	mΩ
gFS	Forward Transconductance	VDS = -5V, ID = -10A	-	3	-	S
Rg	Gate resistance	VGS=0V, VDS=0V, f=1MHz	-	3.2	-	Ω
Dynamic Chai	racteristics					
Ciss	Input Capacitance	VDS = -15V, VGS = 0V,	-	3850	-	рF
Coss	Output Capacitance	f=1MHz	-	470	-	pF
Crss	Reverse Transfer Capacitance		-	257	-	pF
Switching Cha	aracteristics					
td(on)	Turn-On Delay Time	VDS = -15V, RG = 3Ω, ID = -6A , VGS = -10V (Note 5, 6)	-	20	-	ns
tr	Turn-On Rise Time		-	13	-	ns
td(off)	Turn-Off Delay Time		-	55	-	ns
tf	Turn-Off Fall Time		-	21	-	ns
Qg(10V)	Total Gate Charge	VDS = -15V, ID = -6A, VGS =- 0~10V (Note 5, 6)	-	60	-	nC
Qg(4.5V)	Total Gate Charge		-	48	-	nC
Qgs	Gate-Source Charge		-	11	-	nC
Qgd	Gate-Drain Charge		-	13	-	nC
Drain-Source	Diode Characteristics and Maximum	Ratings				
IS	Maximum Continuous Drain-So Current	Maximum Continuous Drain-Source Diode Forward Current		-	-	Α
ISM	Maximum Pulsed Drain-Source	Maximum Pulsed Drain-Source Diode Forward Current		-	-25	Α
VSD	Drain-Source Diode Forward Voltage	VGS = 0V, IS = -1A	-	-0.7	-1.2	v
trr	Reverse Recovery Time	VGS = 0V, IS =-6A	-	24	-	ns
Qrr	Reverse Recovery Charge	dIF/dt =-100A/µs (Note 5)	-	30	-	nC

A: The value of ReJA is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with TA = 25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t < 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

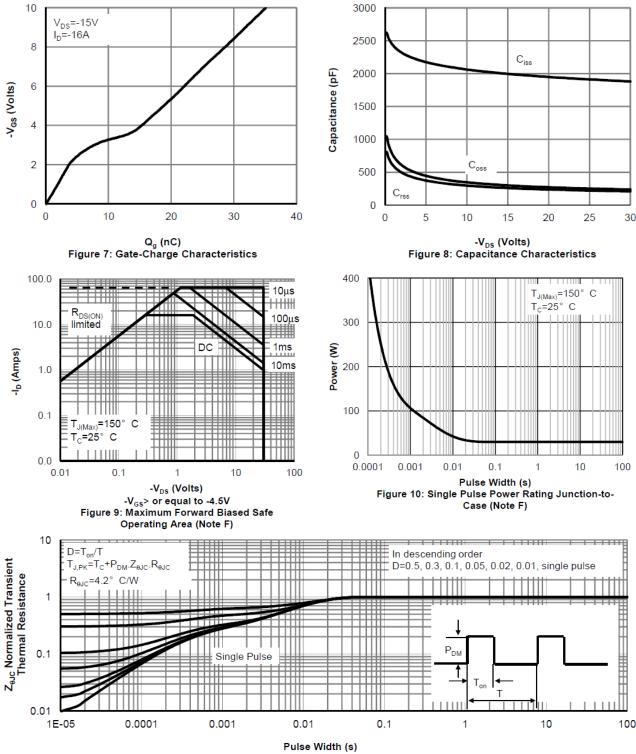
C. The R BJA is the sum of the thermal impedence from junction to lead RBJL and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using < 300 µs pulses, duty cycle 0.5% max.

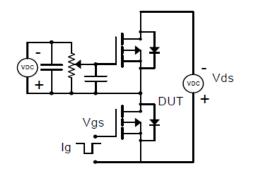

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The

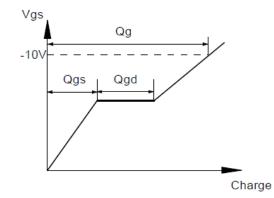
SOA curve provides a single pulse rating.

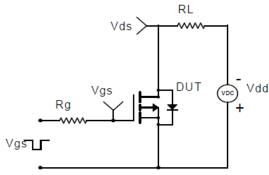
F. The current rating is based on the t \leq 10s thermal resistance rating.

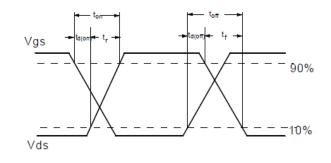

G. EAR and IAR ratings are based on low frequency and duty cycles to keep Tj=25C.

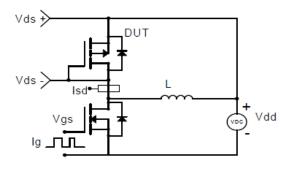
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

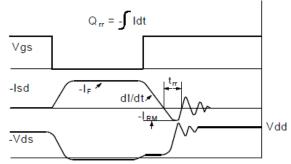



TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS




Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

